TECHNOLOGY LEARNING CENTER

.. Finvishing School for Engineer’'s

Advanced Embedded Systems

C language

» Introduction to C language
s Features of C
* History
* Structure of C Program.
* Keywords, Identifiers, Variables and Constants
» Data Types
* Primitive Data Types.
e Aggregated Data Types.
» Operators
* Binary Operators
* Unary Operators
* Temary Operators
* Special Operators
* Order of evaluation.
» Preprocessor features
» Control-Flow Statements
* The Control-Flow Program Statements
* Looping Statements
* The Data-checking process
» Functions
* Role of Functions
* Passing arguments to functions
* Returning values from functions
* Recursive Functions
* Callback functions
* TImplications on Stack
* Pass by value/reference
» Arrays
* Defining, initializing and using arrays
* Multi Dimensional arrays
* Arrays of Characters and Strings
* Arrays and pointers
* Passing arrays to functions

@ info@tlcindia. or Q +91-9581100283/284
www.tlcindia.org -

TECHNOLOGY LEARNING CENTER

.. Finvishing School for Engineer’'s

String handling and its library functions

> Storage Classes

Scope and lifetime of a variable
Internal

External/Global

Automatic

Static

Register

Volatile

» Structures & Unions

Usage of Structures

Declaration, initialization and accessing
Nested Structures

Array of structures

Allocation of memory and holes
Unions

» Bitwise Operators

AND (&), OR ([), XOR (")

Compliment (~)

Left-shift (<<), Right-shift (>>)
Masking, Setting and Testing of Bit/Bits

» Pointers

The purpose of pointers
Defining pointers

The & and * operators
Pointer assignment
Pointers with functions
Pointer to Pointer
Pointers to Arrays
Arrays of Pointers
Void Pointers

Call By value and Call by reference
Advanced pointer types
Pointers to functions
Pointers and Strings

@ info@tlcindia. or

www.tlcindia.org

v +91-9581100283/284
b

TECHNOLOGY LEARNING CENTER

.. Finvishing School for Engineer’s

v

Pointers and Dynamic memory

Command line arguments
Dynamic Memory Allocation

Allocation (Malloc, Calloc, Realloc)
De-Allocation(Free)

Variable Number of Arguments

Implementation of printf()
Implementation of scanf()

Data Structures

Introduction

Linked Lists

Stacks & Queues

Stacks Using Arrays
Stacks Using Linked List
Queues using Arrays
Queues using Linked List.
Circular Queues

Single Linked List
Circular Linked List
Double Linked List

Infix, Prefix and Postfix Expressions
Trees

Binary Trees

Binary Search Trees
Graphs

Hashing

» Sorting and Searching Techniques

Insertion sort
Selection sort
Bubble sort
Merge sort
Quick sort
Heap sort
Linear search
Binary search

> File Handling Concepts

@

info@tlcindia. or

www.tlcindia.org

v +91-9581100283/284
b

TECHNOLOGY LEARNING CENTER

.. Finishing School for Engineesr’s

Concept of a FILE data type
File Input, Output operations
Sequential Files

Random Access Files

» Standard I/O Library Functions

fopen, fread,fwrite,fclose,fseek
Relationship between file descriptor
and FILE pointer

Character at a time I/O

Line at atime I/O

Formatted I/O

» Reading and Writing Structures to Files

In Ascii format
In Binary format
Modifying a structure in the file

Development Tools & utilities:

YVYV VYV VVVVYVYVYVVVYYVYYVYY

Linux commands useful in development
Consumer Electronics

Vi editor

GCC compiler

Functionality of Preprocessor
Functionality of Compiler
Functionality of Assembler
Functionality of Linker
Interrupting the Compiler
Compiling a C Program
Preprocessor Features

Predefined Preprocessor Symbols
Warnings and Extensions
Optimization

GDB debugger

Archive Utility

Make Utility

Object File format

@ info@tlcindia. or

www.tlcindia.org

@ +91-9581100283/284
%

TECHNOLOGY LEARNING CENTER

.. Finvishing School for Engineer’'s

» Executable File Format

Operating System Concepts:

Learning of operating system concepts will help you in understanding Desktop, Embedded &
Real-time Operating Systems easily in less time.

Introduction

Processes

Threads

CPU Scheduling
Process Synchronization
Deadlocks

Memory management
Virtual Memory.

¥YVVYVYVYVVY VY

File management & Disk management
Linux System Programming:

Linux is used in almost all system domains (Networking/Telecom) and also most of the RTOS
are very similar to Linux.

So leaming of Linux programming will help you in understanding and work easily in system
domain as well as in embedded systems.

» The GNU C Library and System Calls
* Library Goals
* Library Standards
* GNU C Library - glibc
e Library Functions vs. System Calls
* Using System Calls
* Handling Errors with errno
* Making Sense of errno
* Using strace

» Program Arguments and Environment
e Program Startup

@ info@tlcindia. or Q +91-9581100283/284
www.tlcindia.org -

TECHNOLOGY LEARNING CENTER

.. Finvishing School for Engineer’'s

Using argc/argv

Handling Options with getopt()
Handling Options with getopt long()
Environment

Manipulating the Environment
Program Exit

Registering Exit Handlers

% Building Libraries

Why Use Libraries?
Static Versus Shared
Static Library Benefits
Shared Library Benefits
Creating a Static Library
Using Static Libraries
Creating a Shared Library
Using Shared Libraries
Shared Library Management
Library Locations
Idconfig

» Time Functions

When Does Time Begin?
Time Data Types
Determining Real Time
Converting time_t
Converting tm Structure
Process Time

Time arithmetic

Second Resolution Timers
Fine-Grained Timers

Real Time Clock (RTC)

» Process Management

What a Process Is

Process Relationships
Create a Child Process
Doing Something Else
Related execve() Functions

@ info@tlcindia. or

www.tlcindia.org

v +91-9581100283/284
b

TECHNOLOGY LEARNING CENTER

.. Finvishing School for Engineer’s

* Wait For a Child
* More Precise Waiting
* Changing Priority/Nice
e Real Time Priority
» Memory Operations
* Allocating/Freeing Memory
* Memory Alignment
* Locked Memory
* Memory Copy/Initialization
* Memory Comparison/Search
» Debugging
* What Is My Program Doing?
* Source Level Debugging
* Invoking gdb
* Getting Started with gdb
* Examining and Changing Memory
* Debuginfo Libraries
* Using gdb with a Running Process
* Using gdb to Autopsy a Crash
* Debugging Libraries - ElectricFence
* Debugging with valgrind
* Profiling for Performance
» Basic File Operations
* Stream vs. System Calls
* Opening/Closing Streams
* Stream Input/Output Functions
* Stream Status/Errors
* Stream File Positioning
* Stream Buffering
* Temporary/Scratch Files
* Opening/Closing File Descriptors
* File Descriptor /O
* Repositioning File Descriptors
* Stream/File Descriptor Conversions
* cat using ANSI I/O
* cat using POSIX I/O

@ info@tlcindia. or

www.tlcindia.org

v +91-9581100283/284
b

TECHNOLOGY LEARNING CENTER

.. Finishing School for Engineesr’s

» Communicating with Pipes

Introduction to Pipes

Standard I/O: popen()/pclose()
Using popen()/pclose()
System Call: pipe()

Using pipe()

Named Pipes

Using Named Pipes

For Further Reading

» Managing Signals

What Signals Are
Blocking/Checking Signals
Working with Signal Sets
Example of Blocking Signals
Handling Signals with sigaction()
igaction() Example

Handling Signals with signal()
Sending Signals

» Programming with Threads

Introducing Threaded Programming
Applications Suited to Threads
Building Threaded Programs
Creating Threads

Thread Identity

Synchronizing by Joining
Detaching Threads

Stopping Threads
Synchronizing with Mutexes
Using Mutexes

Read/Write Locks

Conditional Variables

Using Conditional Variables

» Advanced File Operations

Directory Operations
File System Operations
Multiplexed I/0 with select()

@ info@tlcindia. or

www.tlcindia.org

v +91-9581100283/284
b

TECHNOLOGY LEARNING CENTER

.. Finvishing School for Engineer’'s

* Miscellaneous I/0 Functions
* Memory Mapped I/O
* Using Memory Mapped I/O
* File Locking
» Interprocess Communication
* Interprocess Communication (IPC)
¢ POSIXIPC Overview
* POSIX Shared Memory
POSIX Semaphores
POSIX Message Queues
* System V IPC Overview
e System V IPC Shared Memory
e System V IPC Semaphore Arrays

Introduction to Embedded Systems:

Programmer’s view of hardware
CPU

Types of CPUs

CPU Characteristics

CPU Bus/Machine Cycles
Memory

Memory types

CPU Memory interface

I/'0

1/0 controllers

CPU I/O interface

I/0 methods/techniques
Polled I/O or Programmed I/O
Interrupt Support

DMA Support

YVYVVVYVYVYVYVVYVYVVYY

Development Environment:

* Host-Target Environment
* Cross compilers

* Downloading methods

@ info@tlcindia. or

www.tlcindia.org

@ +91-9581100283/284
%

TECHNOLOGY LEARNING CENTER

.. Finvishing School for Engineer’'s

Serial, Ethernet, Floppy, ROM
Emulators

Target based debugging

Debug Monitors

Host based source level debugging

Linux Kernel & Device Drivers:

After Gaining knowledge on Advanced Linux Programming you are ready to learn

Device Drivers.

This is where you learn core of Linux Kernel and Device Drivers programming.

»
>

Introduction to Linux kernel Programming
Kernel Classifications
= Monolithic Kernels
= Micro Kemels
The User space & Kernel space
Tool Chains, Libraries, The Makefile
= GNU toolchain
= Creation of Static & Dynamic Libraries
= Portability support in the kernel
The Linux Kernel
= Getting the sources
= Configuring the kernel
= Diff and Patching utilities
= Compiling the kernel
= Installing & Booting the kernel

Step by Step demystification of Linux Boot Procedure

= Module Programming

= The HelloWorld Module

= Module Stacking

= Module Parameters
System Calls

* Registering a System Call

* System Call Handler

* Service Routines

@ info@tlcindia. or

www.tlcindia.org

@ +91-9581100283/284
%

TECHNOLOGY LEARNING CENTER

.. Finvishing School for Engineer’s

Character Drivers

» Device Numbers
= Major and Minor Numbers
= Registering and Unregistering
= Static and Dynamic allocations
% TImportant Structures
= File Operations
= File
= TInode
» Character Devices
= cdev structure
= Adding, Allocating, Initializing and Deleting
= TUser Space Applications and Device Driver mapping
= Access methods within the driver, open, rea\d, write and close
= Advanced Character Drivers
= IOCTL
= Wait
» Kernel Synchronization
= Critical Sections, Race Conditions
= Concurrency and its Sources
» Mechanisms for Kernel Synchronization
= Semaphores
= Reader/ Writer Semaphores
= Spinlocks
= Reader/ Writer Spinlocks
= Completions
= Sequential locks
= Barriers
= Read Copy Update
» Atomic Operations
» Memory Allocation in the kernel
» Debugging the Kernel
= Printk, Traces and Watches
= gdb, kgdb, kdb
= User Mode Linux
= Qemu
= Proc & Sys File Systems

@ info@tlcindia. or Q +91-9581100283/284
www.tlcindia.org -

TECHNOLOGY LEARNING CENTER

.. Finishing School for Engineesr’s

» Timers & Bottom Halves
= HZ & Jiffies, Delays
= Kernel Timers
= Soft irgs
= Tasklets
= Work Queues
= Kernel Data Types
» Interrupts
= Handlng I/O
= I/O Architecture
I/0 Mapped I/0
Memory Mapped I/O
Interrupts & Registering Interrupt Handlers

¥YVVYY¥Y

Interrupt Context vs Process Context
Block I/O Layer

Block Device Structure

Request queunes

Block Driver

I/0 Scheduling
Linux Device Drivers

» UART Driver
= TUART Protocol
= TUART Driver Layered Architecture
= TUART subsystems
= Porting, Development & Validation of UART Driver
» I2C Driver
= I2C Protocol
= I2C subsystems
= 12C Driver Layered Architecture
= Porting, Development & Validation of 12C client Driver
= Porting, Development & Validation of I2C platform Driver
» PCI Driver
= PCI Architecture & Protocol

@ info@tlcindia. or (4 +91-9581100283/284
www.tlcindia.org -

TECHNOLOGY LEARNING CENTER

.. Finvishing School for Engineer’'s

= PCI Regions & Direct Memory Access

= PCI subsystems

= PCI Driver Layered Architecture

= Porting, Development & Validation of PCI client Driver
» USB Driver

= TUSB Architecture & Protocol

= Types of Descriptors & URB

= TUSB subsystems

= TUSB Driver Layered Architecture

= Porting, Development & Validation of USB Gadget Driver
» Network Drivers

ARM (32-bit) Processor Architecture & Programming:

The ARM is a 32-bit reduced instruction set computer (RISC) instruction set architecture
(ISA) developed by ARM Holdings. It was known as the Advanced RISC Machine. The ARM
architecture is the most widely used 32-bit ISA in terms of numbers produced. The relative
simplicity of ARM processors made them suitable for low power applications. This has made
them dominant in the mobile and embedded electronics market, as relatively low cost, and small
microprocessors and microcontrollers.

As of 2005, about 98 percent of the more than one billion mobilephones sold each year use at
least one ARM processor. As of 2009, ARM processors account for approximately 90% of all
embedded 32-bit RISC processors. ARM processors are used extensively in consumer
electronics, including PDAs, mobile phones, digital media and music players, hand-held game
consoles, calculators and computer peripherals such as hard drives and routers.

Introduction to ARM (ARM7/ARM9)

ARM processor architecture & Features

ARM programming model (Instruction set and assembly language programming).
RISC vs. CISC

Pipelining concept

Fundamentals of ARM

Processor modes

Exception Handling

ARM versions

Instruction Set & Addressing Modes

¥YVVVYVYYVYVYVY

@ info@tlcindia. or v +91-9581100283/284
www.tlcindia.org -

TECHNOLOGY LEARNING CENTER

.. Finvishing School for Engineer’'s

ARM(32-bit) Instruction Set
Thumb(16-bit) Instruction Set

Pre & Post Indexed Addressing modes
Stack Organization

Memory Organization

Mixed C and assembly programs
System Design & Development Tools
Case studies on ARM Controllers

YV VVVVYYVYYVY

Real-Time OS Introduction:

v

What is RTOS?

Desktop OS vs. RTOS

RTOS Key Characteristics

RTOS Services

Task Management
= Inter task Communication Methods
= Synchronization Techniques

YV VY

= Interrupt handling
= Timers
= Signals and Events
= Priority Inversion/Inheritance
» Embedded Linux
= Benefits of using Linux and open source tools for embedded systems
= Linux booting sequence
= Components of Linux booting
= Embedded Linux system architecture
» Cross Compiler Tool Chain
= Need for cross tool-chain
= Using pre-build cross tool-chain
= Building our own cross tool-chain
» Boot-loader
= Boot-loaders and its advantages
= Overview of U-boot source
= Building U-boot for target
= Booting target with U-boot

@ info@tlcindia. or (4 +91-9581100283/284
www.tlcindia.org -

TECHNOLOGY LEARNING CENTER

.. Finvishing School for Engineer’s

» Kernel
= Supported hardware architectures
= Modifying Architecture Specific code
= Cross-compiling the kernel for target
= TUnderstanding kernel boot arguments
» File System
= TUnderstanding NAND/NOR flash
= Understanding Linux File system hierarchy
= Busy Box & Build root
= Cross-compiling applications and libraries
= Creating File System Images(jffs, jffs2, yaffs, yaffs2)
» Board Bring Up
= Flashing Boot-loader Image
= Flashing Kernel Image
= Flashing File system Image

info@tlcindia. or v +91-9581100283/284
www.tlcindia.org -

